Computer engineering

The motherboard used in a HD DVD player, the result of computer engineering efforts.

Computer engineering is a discipline that integrates several fields of electrical engineering and computer science required to develop computer hardware and software.[1] Computer engineers usually have training in electronic engineering (or electrical engineering), software design, and hardware–software integration instead of only software engineering or electronic engineering. Computer engineers are involved in many hardware and software aspects of computing, from the design of individual microcontrollers, microprocessors, personal computers, and supercomputers, to circuit design. This field of engineering not only focuses on how computer systems themselves work, but also how they integrate into the larger picture.[2]

Usual tasks involving computer engineers include writing software and firmware for embedded microcontrollers, designing VLSIchips, designing analog sensors, designing mixed signal circuit boards, and designing operating systems. Computer engineers are also suited for robotics research, which relies heavily on using digital systems to control and monitor electrical systems like motors, communications, and sensors.

In many institutions, computer engineering students are allowed to choose areas of in-depth study in their junior and senior year, because the full breadth of knowledge used in the design and application of computers is beyond the scope of an undergraduate degree. Other institutions may require engineering students to complete one or two years of General Engineering before declaring computer engineering as their primary focus.[3][4][5][6]



  • 1History
  • 2Work
    • 2.1Computer hardware engineering
    • 2.2Computer software engineering
  • 3Specialty areas
    • 3.1Coding, cryptography, and information protection
    • 3.2Communications and wireless networks
    • 3.3Compilers and operating systems
    • 3.4Computational science and engineering
    • 3.5Computer networks, mobile computing, and distributed systems
    • 3.6Computer systems: architecture, parallel processing, and dependability
    • 3.7Computer vision and robotics
    • 3.8Embedded systems
    • 3.9Integrated circuits, VLSI design, testing and CAD
    • 3.10Signal, image and speech processing
  • 4Education
  • 5Job outlook in the United States
    • 5.1Computer hardware engineering
    • 5.2Computer software engineering
  • 6Similar occupations and fields
  • 7See also
  • 8References


Computer engineering began in 1939 when John Vincent Atanasoff and Clifford Berry began developing the worlds first electronic digital computer through physics, mathematics, and electrical engineering. John Vincent Atanasoff was once a physics and mathematics teacher for Iowa State University and Clifford Berry a former graduate under electrical engineering and physics. Together, they created the Atanasoff-Berry computer, also known as the ABC which took 5 years to complete.[7]While the original ABC was dismantled and discarded in the 1940’s a tribute was made to the late inventors, a replica of the ABC was made in 1997 where it took a team of researchers and engineers four years and $350,000 to build.[8]

The first computer engineering degree program in the United States was established in 1972 at Case Western Reserve University in Cleveland, Ohio. As of 2015, there were 250 ABET-accredited computer engineering programs in the US.[9] In Europe, accreditation of computer engineering schools is done by a variety of agencies part of the EQANIE network. Due to increasing job requirements for engineers who can concurrently design hardware, software, firmware, and manage all forms of computer systems used in industry, some tertiary institutions around the world offer a bachelor’s degree generally called computer engineering. Both computer engineering and electronic engineering programs include analog and digital circuit design in their curriculum. As with most engineering disciplines, having a sound knowledge of mathematics and science is necessary for computer engineers.


There are two major specialties in computer engineering: hardware and software.

Computer hardware engineering[edit]

Most computer hardware engineers research, develop, design, and test various computer equipment. This can range from circuit boards and microprocessors to routers. Some update existing computer equipment to be more efficient and work with newer software. Most computer hardware engineers work in research laboratories and high-tech manufacturing firms. Some also work for the federal government. According to BLS, 95% of computer hardware engineers work in metropolitan areas.[citation needed] They generally work full-time. Approximately 33% of their work requires more than 40 hours a week. For example the typical computer hardware engineer with a bachelors degree as of 2015 makes 111,730 USD annually and a hourly pay of 53.72 USD. The expected ten year growth as of 2014 for computer hardware engineering was an estimated three percent and there was an total of 77,700 jobs that same year.

Computer software engineering[edit]

Computer software engineers develop, design, and test software. They construct, and maintain computer programs, as well as set up networks such as “intranets” for companies. Software engineers can also design or code new applications to meet the needs of a business or individual. Some software engineers work independently as freelancers and sell their software products/applications to an enterprise or individual. A computer software engineer with a bachelors degree as of 2015 makes 100,690 USD annually and a hourly rate of 48.41 USD. The expected ten year growth as of 2014 for computer software engineering was an estimated seventeen percent and there was a total of 1,114,000 jobs that same year. [10]

Specialty areas[edit]

There are many specialty areas in the field of computer engineering.

Coding, cryptography, and information protection[edit]

Computer engineers work in coding, cryptography, and information protection to develop new methods for protecting various information, such as digital images and music, fragmentation, copyright infringement and other forms of tampering. Examples include work on wireless communications, multi-antenna systems, optical transmission, and digital watermarking.[11]

Communications and wireless networks[edit]

Those focusing on communications and wireless networks, work advancements in telecommunications systems and networks (especially wireless networks), modulation and error-control coding, and information theory. High-speed network design, interference suppression and modulation, design and analysis of fault-tolerant system, and storage and transmission schemes are all a part of this specialty.[11]

Compilers and operating systems[edit]

This specialty focuses on compilers and operating systems design and development. Engineers in this field develop new operating system architecture, program analysis techniques, and new techniques to assure quality. Examples of work in this field includes post-link-time code transformation algorithm development and new operating system development.[11]

Computational science and engineering[edit]

Computational Science and Engineering is a relatively new discipline. According to the Sloan Career Cornerstone Center, individuals working in this area, “computational methods are applied to formulate and solve complex mathematical problems in engineering and the physical and the social sciences. Examples include aircraft design, the plasma processing of nanometer features on semiconductor wafers, VLSI circuit design, radar detection systems, ion transport through biological channels, and much more”.[11]

Computer networks, mobile computing, and distributed systems[edit]

In this specialty, engineers build integrated environments for computing, communications, and information access. Examples include shared-channel wireless networks, adaptive resource management in various systems, and improving the quality of service in mobile and ATM environments. Some other examples include work on wireless network systems and fast Ethernet cluster wired systems.[11]

Computer systems: architecture, parallel processing, and dependability[edit]

Engineers working in computer systems work on research projects that allow for reliable, secure, and high-performance computer systems. Projects such as designing processors for multi-threading and parallel processing are included in this field. Other examples of work in this field include development of new theories, algorithms, and other tools that add performance to computer systems.[11]

Computer vision and robotics[edit]

In this specialty, computer engineers focus on developing visual sensing technology to sense an environment, representation of an environment, and manipulation of the environment. The gathered three-dimensional information is then implemented to perform a variety of tasks. These include, improved human modeling, image communication, and human–computer interfaces, as well as devices such as special-purpose cameras with versatile vision sensors.[11]

Embedded systems[edit]

Examples of devices that use embedded systems.

Individuals working in this area design technology for enhancing the speed, reliability, and performance of systems. Embedded systems are found in many devices from a small FM radio to the space shuttle. According to the Sloan Cornerstone Career Center, ongoing developments in embedded systems include “automated vehicles and equipment to conduct search and rescue, automated transportation systems, and human–robot coordination to repair equipment in space.”[11]

Integrated circuits, VLSI design, testing and CAD[edit]

This specialty of computer engineering requires adequate knowledge of electronics and electrical systems. Engineers working in this area work on enhancing the speed, reliability, and energy efficiency of next-generation very-large-scale integrated (VLSI) circuits and microsystems. An example of this specialty is work done on reducing the power consumption of VLSI algorithms and architecture.[11]

Signal, image and speech processing[edit]

Computer engineers in this area develop improvements in human–computer interaction, including speech recognition and synthesis, medical and scientific imaging, or communications systems. Other work in this area includes computer vision development such as recognition of human facial features.[11]


Most entry-level computer engineering jobs require at least a bachelor’s degree in computer engineering. Typically one must learn an array of mathematics such as calculus, algebra and trigonometry and even a few computer science classes. Sometimes a degree in electronic engineering is accepted, due to the similarity of the two fields. Because hardware engineers commonly work with computer software systems, a background in computer programming usually is needed. According to BLS, “a computer engineering major is similar to electrical engineering but with some computer science courses added to the curriculum”.[12] Some large firms or specialized jobs require a master’s degree.

It is also important for computer engineers to keep up with rapid advances in technology. Therefore, many continue learning throughout their careers. This can be helpful, especially when it comes to learning new skills or improving existing ones. For example, as the relative cost of fixing a bug increases the further along it is in the software development cycle, there can be greater cost savings attributed to developing and testing for quality code as soon as possible in the process, and particularly before release.[13]

Job outlook in the United States[edit]

Computer hardware engineering[edit]

According to the BLS, Job Outlook employment for computer hardware engineers, The expected ten year growth as of 2014 for computer hardware engineering was an estimated three percent and there was an total of 77,700 jobs that same year. (“Slower than average” in their own words when compared to other occupations)”[14] and is down from 7% for 2012 to 2022 BLS estimate[14] and is further down from 9% in the BLS 2010 to 2020 estimate.” Today, computer hardware is somehow equal to electronic and computer engineering (ECE) and has divided to many subcategories, the most significant of them is Embedded system design.[12]

Computer software engineering[edit]

According to the U.S. Bureau of Labor Statistics (BLS), “computer applications software engineers and computer systems software engineers are projected to be among the faster than average growing occupations” The expected ten year growth as of 2014 for computer software engineering was an estimated seventeen percent and there was a total of 1,114,000 jobs that same year. [15] This is down from the 2012 to 2022 BLS estimate of 22% for software developers.[10][15] And, further down from the 30% 2010 to 2020 BLS estimate.[16] In addition, growing concerns over cyber security add up to put computer software engineering high above the average rate of increase for all fields. However, some of the work will be outsourced in foreign countries. Due to this, job growth will not be as fast as during the last decade, as jobs that would have gone to computer software engineers in the United States would instead go to computer software engineers in countries such as India.[17] In addition the BLS Job Outlook for Computer Programmers, 2014–24 has an −8% (a decline in their words)[17] for those who program computers (i.e. embedded systems) who are not computer application developers[18].

Similar occupations and fields[edit]

  • Computer programming
  • Electrical engineering
  • Software development
  • Systems analyst

Leave a Reply

Your email address will not be published. Required fields are marked *

Other Menu
This is the official Menu of